Introduction to fluid mechanics
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* |n fluid mechanics several variables are involved.
 Often they can be grouped in non-dimensional numbers.

o “Universal” FUNCTIONAL RELATIONSHIP between those non-dimensional
numbers <« EXPERIMENTS.

« Applications:

- Design of experiments at reduced scales (e.g. wind tunnel, water flumes)
- Simple models (e.g., the ‘log-law’: logarithmic velocity profile)
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Important variables: e
Viscosity: y _ —
Velocity: V — - '
Diameter: D '“"’ii?i?ﬁiﬁiiiiifff_ff{};;_:;;;—_»;;-- -A------;;:'::;;’_ii_'.'_{i_ff;_-}_-;:‘ =
Density: p

[ [
"-4.‘ 3 i

F,o=f V,p,u,D
—— S ~ v
dependent independent variables

GOAL: |dentify non-dimensional groups between the important variables and find a
‘universal’ relation between them
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Primary dimensions:

Table 1.2 PRIMARY DIMENSIONS

Dimension Symbol Unit (SI)
Length L meter (m)
Mass M kilogram (kg)
Time T second (s)
Temperature 0 kelvin (K)
Electric current i ampere (A)
Amount of light C candela (cd)
Amount of matter N mole (mol)
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Secondary dimensions:

Force:
L ML
[Fl=ma)=M =5
Pressure:
Fl ML/T> M
[p]: — |~ 7 = 7
A L LT
Viscosity:
rou
/de
ML 1 M
T_-_ [,U] E
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Buckingham 11 Theorem

* n: number of variables involved
 m:number of basic dimensions included in the variables

* (n-m) number of dimensionless variables (I'1 groups)
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n: number of variables involved: (F,.,V,p,u,D)
m: number of basic dimensions included in the variables: ([M,L,T])
(n - m) number of dimensionless variables (I'1 groups)

In this case: 5-3=2, number of dimensionless variables
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Important variables:
Viscosity:
Velocity: V
Diameter: D
Density: p
ML
[FD]_F’
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F, =f| V.p,u,D
— —
dependent independent variables

L _M. _M _
VI=%: [p)=%s (=1t (D)=L
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» Exponent Method

1. Dimensions of signiﬁcant variables are

ML

F1 =22 11=%, 1p] - =
T

, [pl==, [D]=L

SR

2. Number of m-groups is 5 -3 = 2.

3. Form product with dimensions.

7 =[] <[] <[zl <uer

a-3b—-c+d , ,bte

L M

atc
T

4. Dimensional homogeneity. Equate powers of dimensions
on each side.

L: a-3b-c+d=1
M b+c=1
T a+c=2
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6.

Solve for exponents a, b, and ¢ in terms of d.

1 -3 -1 a 1 -d
01 1 b |~
1 0 1 c 2

The value of the determinant is —1 so a unique solution is
achievable. Solutionisa=d, b=d-1, c=2-d

Write dimensional equation with exponents.

F= Vdpd—l }Lz_dDd

-1 (e’
’5‘5()

There are two r-groups:

1T|=E-g and1‘r2=9£l—)
n e

By dividing 7, by the square of 1, , the 7, group can be
written as Fp/(pV 2D2), so the functional form of the
equation can be written as

£ (e2)
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Empirical ‘universal’ relation between the two non-dimensional groups (from experiments):

D
F @
Cd: D -8_1000
| Y i
—pV —D = N
2 4 Q N
2 100 +=x
(drag coefficient) &
o N
£ 10 =2
5 .
kG 1 by
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n 04
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Re = Reynolds number
DV
PEY _Re (Reynolds number)
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(We will see in detail later on - Chapter 11)
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In the surface layer (lowest 10-20%), the velocity gradient is known to
change with height, density and shear stress

du f ( ) Free stream
_— = , Z, T N e nl S P
dZ p T Velocity vector -1
Using dimensional analysis, show that the E: |
velocity profile should be LOGARITHMIC. € f’::::;s': layer
(du| 1 M 2
e :_;[IO]:_;[Z]:L; = Wall
dZ T L3 O P77 7222l
) VEloCiy s
- ] ML M
T|= =
-1 T’ T°L

n=4 m= é —>n—m=1 ‘ 1 dimensionless group!
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Turbulent boundary layer flow:

Free stream

e

e —

The velocity gradient changes,

T Velocity vector
a c s
1 B M . [L] b . M g Boundary layet
- - _3 B S thickness
T L T°L -
\c)
L
44
= Wall
. —_ i
L: 0=-3a+b+c S o770
M: 0O=a+c VElogity i

T: —1=-2c

c=1/2; a=-1/2; b=-1

du o p—1/2Z—ITI/2 — NT/p |:\/’L' / p} = é — friction velocity :u, =T/ p
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Turhulent boundary layer flow

Velocity vector

Free stream

_———

Boundary layet
thickness

o Distance from wall s

_"Surface
L el | (10g) layer

.'7./7.'_7

VElOCIY s

zdu :
— —— = constant (universal)

u, dz

zdu 1 1
——=—=——, K :von Karman cont.
u, dz x 04

u, U, (5 dz

du=—| —
u K4 Z
u,., z _

u—u=—In-* — atz=z,u=0 —

2 1
K z |
Over a rough surface:

u z

" In—

K Z,

u(z)=

Logarithmic velocity

profile (log-law) in the

z, is the aerodynamic roughness

surface layer

z, (aerodynamic/hydrodynamic roughness): defined as the height at which the velocity

would be zero if extrapolating the log law.

The LOG LAW is valid in the ‘surface layer’ (the lowest 10-20% of the boundary layer),

where uxcan be assumed to be constant
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Turbulent boundary layer flow:

A
Inz
>
v
u
u=0
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Ap:f(VaLapaluaEvagaAy)

F : .
[Ap]:% pressure difference [A)’ ]:E weigth difference
L FT* M
V== veloci = = densi
V=7 velocity lpl=—="5 1y
L|=L length [,u]:% Viscosity
F .
[0] =—surface tension F N
L [Ev]:? elasticity
( )
Ap g VLp V  pLV® V?
sz ‘LL d Ev > O' ,Lﬂ
p P
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Table 8.3 COMMON II-GROUPS

m-Group Symbol Name Ratio
Rl O —ZPO G, Pressure coefficient Pre.ssur.e lisreice
(pV=)/2 Kinetic pressure
— cr Shear-stress coefficient S hc.ar SIress
(pV~)/2 Kinetic pressure
[ Cr Force coefficient —-,—E-SI-EE--
(pV 2Lz) /2 Kinetic force
LV .
i Re Reynolds number Kfncnc force
P Viscous force
v M Mach number Kmeuc. force
c Compressive force
2 L.
PLY We Weber number Kinetic forcc
o Surface-tension force
Fr Froude number Jmeisalones

v
gL

Gravitational force

E PFL \ Dimensional Analysis and Similitude _
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Inertial (kinetic) force: [ £, = {1 sz.A}c(sz)(Lz):pLsz

Viscous force:

E. pLV® |pLV
F uVL | u

v

= Re

(][] w2 )(£)-ar L

(Reynolds number)

Laminar flows

Example:
-water flow inside soils

Dimensional Analysis and Similitude
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Turbulent flows

Examples:
-river flows
-atmospheric boundary layer
-most pipe and channel flows
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Laminar and Turbulent Flow

Reynolds’ experiment Reynolds Number: Re — VD _ pVD
D n
Re <2000 laminar flow
2000 £ Re <3000 unpredictable
Re > 3000 turbulent flow
Dye
N Glass tube
4
(a)
Laminar flow b
é (b)
\
Turbulent flow 7z —
)
Eddies in turbulent flow > e



Interpretation: Force ratios
Kinetic (inertial) force: [ £, ]= [ oV’ } (p7?)(L)=pLV?

Pressure force: F, |=[apd]cpl’

2F, 2ApL* | A .
L oc 12? - = P C, | (pressure coefficient)
F pLyv? |1

19
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Interpretation: Force ratios
T : _ l 2 o 2\( 72\ = ~72p2
Kinetic force: [F,]= {2 pV A} (p72)(L)=pLV

Surface tension force : |F JocoL

F,  pLV" | pLV”
F oL o

(o}

= We| (Weber number)

We>>1 ——> Surface tension not important

Dimensional Analysis and Similitude
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Interpretation: Force ratios
: ' " . 1 2 2 2 2172
Inertial (kinetic) force: [ F, ]= b oV A} < (pr?) ()= pLV

Gravity force [Fg}z[mg]oc(pﬁ)(g)

F, / cv: v |V
ko |P — = \/ = =Fr| (Froude number)
’\/ F. \plg VLilg ||Lg

e Note: Very important in Hydraulics (open channel flow) — will study in Chapter 15

21

Dimensional Analysis and Similitude

Introduction to fluid mechanics

EPFL .

WIRE



Inertial (kinetic) force: | F, |= % V2. A} o ( pVZ)( L2) _ pIV’

Elastic force: [F.]= :EVLZ} = oVl
2172
l o PL V2 17 M | (Mach number)
F  pVel” |c

Subsonic flow (incompressible)

M <0.8

Most environmental flows:
-rivers
-lakes
-groundwater
-atmosphere

Dimensional Analysis and Similitude
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Supersonic flow (compressible!)

M>1.2
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Experiments are often difficult in ‘real’ (field) scales because of:
o Complicated boundary conditions
o Difficult to measure the flow in the field
o Turbulence
o Non-repeatable

An alternative is to use laboratory experiments (e.g., in wind tunnels or
water flumes).
o Two aspects that we have to take into account in lab experiments:

» Geometric similarity
»Dynamic similarity

Dimensional Analysis and Similitude

EPFL \»k Introduction to fluid mechanics
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1. Geometric similarity
means that the model is an exact geometric replica of the prototype

Figure 8.4 | €,

(a) Prototype. (b) Model. ’< I E’
H'j le— L;.:-
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2. Dynamic similarity
the forces that act on corresponding masses in the model and prototype
are in the same ratio throughout the entire flow field.
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