

Introduction to fluid mechanics

Dimensional Analysis and Similitude

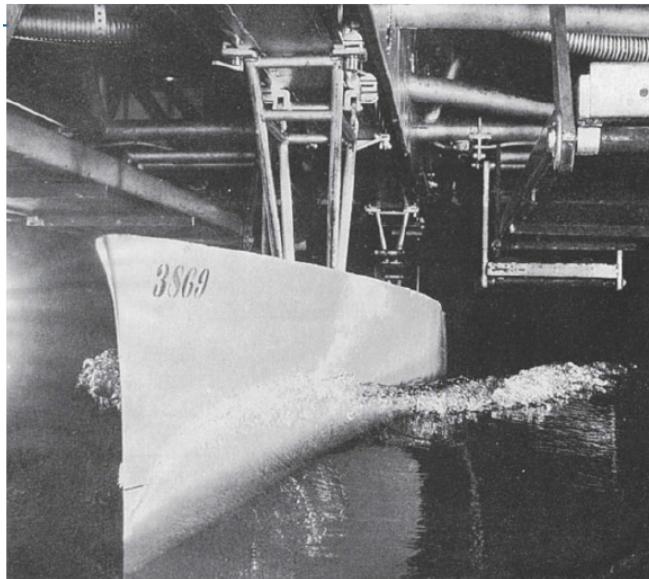
Fernando Porté-Agel

Wind engineering and
renewable energy laboratory
WiRE

EPFL

Need for Dimensional Analysis

- In fluid mechanics several variables are involved.
- Often they can be grouped in non-dimensional numbers.
- “Universal” **FUNCTIONAL RELATIONSHIP** between those non-dimensional numbers \leftrightarrow EXPERIMENTS.
- Applications:
 - **Design of experiments at reduced scales** (e.g. wind tunnel, water flumes)
 - **Simple models** (e.g., the ‘log-law’: logarithmic velocity profile)



Example: Drag Force on a Sphere

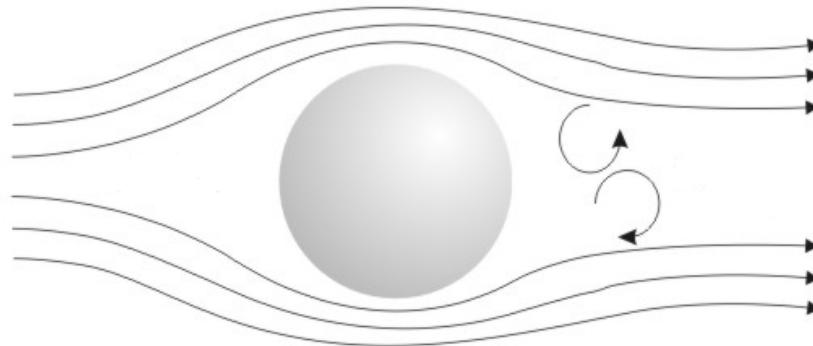
Important variables:

Viscosity: μ

Velocity: V

Diameter: D

Density: ρ



$$\underbrace{F_D}_{\text{dependent}} = f \left(\underbrace{V, \rho, \mu, D}_{\text{independent variables}} \right)$$

GOAL: Identify non-dimensional groups between the important variables and find a 'universal' relation between them

Introduction

Primary dimensions:

Table 1.2 PRIMARY DIMENSIONS

Dimension	Symbol	Unit (SI)
Length	L	meter (m)
Mass	M	kilogram (kg)
Time	T	second (s)
Temperature	θ	kelvin (K)
Electric current	i	ampere (A)
Amount of light	C	candela (cd)
Amount of matter	N	mole (mol)

Secondary dimensions:

Force:

$$[F] = [ma] = M \frac{L}{T^2} = \frac{ML}{T^2}$$

Pressure:

$$[p] = \left[\frac{F}{A} \right] = \frac{ML/T^2}{L^2} = \frac{M}{LT^2}$$

Viscosity:

$$\tau = \mu \frac{du}{dy}$$

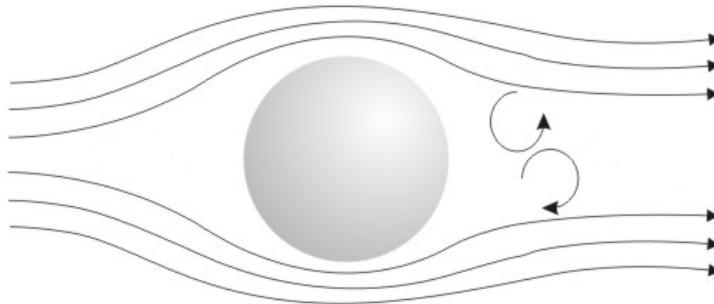
$$\frac{ML}{T^2} \cdot \frac{1}{L^2} = [\mu] \frac{L}{TL} \rightarrow [\mu] = \frac{M}{TL}$$

Buckingham Π Theorem

- n : number of variables involved
- m : number of basic dimensions included in the variables
- $(n - m)$ number of dimensionless variables (Π groups)

Example: Drag Force on a Sphere

- n : number of variables involved: (F_D, V, ρ, μ, D)
- m : number of basic dimensions included in the variables: $([M, L, T])$
- **$(n - m)$ number of dimensionless variables (Π groups)**
- In this case: $5-3=2$, **number of dimensionless variables**



Example: Drag Force on a Sphere

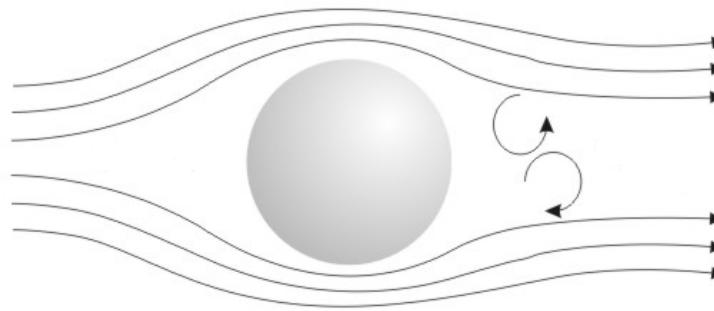
Important variables:

Viscosity: μ

Velocity: V

Diameter: D

Density: ρ



$$\underbrace{F_D}_{\text{dependent}} = f \left(\underbrace{V, \rho, \mu, D}_{\text{independent variables}} \right)$$

$$[F_D] = \frac{ML}{T^2}; \quad [V] = \frac{L}{T}; \quad [\rho] = \frac{M}{L^3}; \quad [\mu] = \frac{M}{LT}; \quad [D] = L$$

Drag Force on a Sphere

- *Exponent Method*

1. Dimensions of significant variables are

$$[F] = \frac{ML}{T^2}, [V] = \frac{L}{T}, [\rho] = \frac{M}{L^3}, [\mu] = \frac{M}{LT}, [D] = L$$

2. Number of π -groups is $5 - 3 = 2$.

3. Form product with dimensions.

$$\begin{aligned} \frac{ML}{T^2} &= \left[\frac{L}{T}\right]^a \times \left[\frac{M}{L^3}\right]^b \times \left[\frac{M}{LT}\right]^c \times [L]^d \\ &= \frac{L^{a-3b-c+d} M^{b+c}}{T^{a+c}} \end{aligned}$$

4. Dimensional homogeneity. Equate powers of dimensions on each side.

$$L: a - 3b - c + d = 1$$

$$M: b + c = 1$$

$$T: a + c = 2$$

5. Solve for exponents a , b , and c in terms of d .

$$\begin{pmatrix} 1 & -3 & -1 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix} \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} 1-d \\ 1 \\ 2 \end{pmatrix}$$

The value of the determinant is -1 so a unique solution is achievable. Solution is $a = d$, $b = d - 1$, $c = 2 - d$

6. Write dimensional equation with exponents.

$$F = V^d \rho^{d-1} \mu^{2-d} D^d$$

$$F = \frac{\mu^2}{\rho} \left(\frac{\rho V D}{\mu} \right)^d$$

$$\frac{F \rho}{\mu^2} = \left(\frac{\rho V D}{\mu} \right)^d$$

There are two π -groups:

$$\pi_1 = \frac{F \rho}{\mu^2} \text{ and } \pi_2 = \frac{\rho V D}{\mu}$$

By dividing π_1 by the square of π_2 , the π_1 group can be written as $F_D / (\rho V^2 D^2)$, so the functional form of the equation can be written as

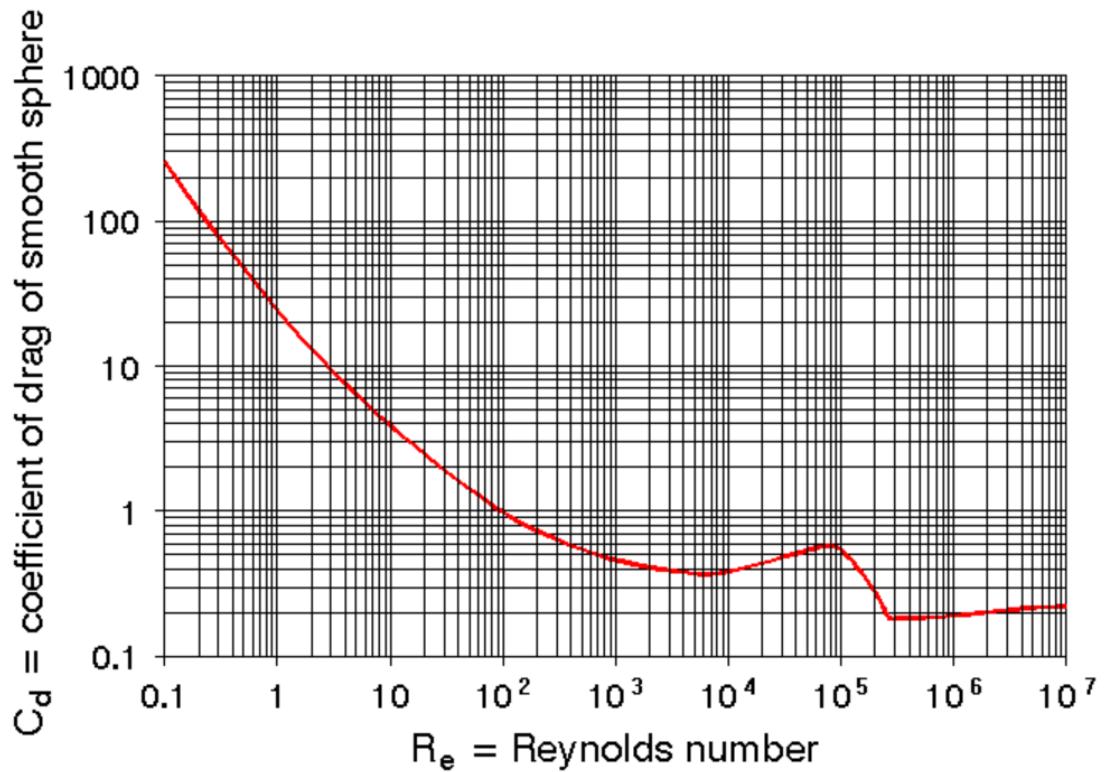
$$\frac{F}{\rho V^2 D^2} = f \left(\frac{\rho V D}{\mu} \right)$$

Drag Force on a Sphere

Empirical ‘universal’ relation between the two non-dimensional groups (from experiments):

$$C_d = \frac{F_d}{\frac{1}{2} \rho V^2 \left(\frac{\pi}{4} D^2 \right)}$$

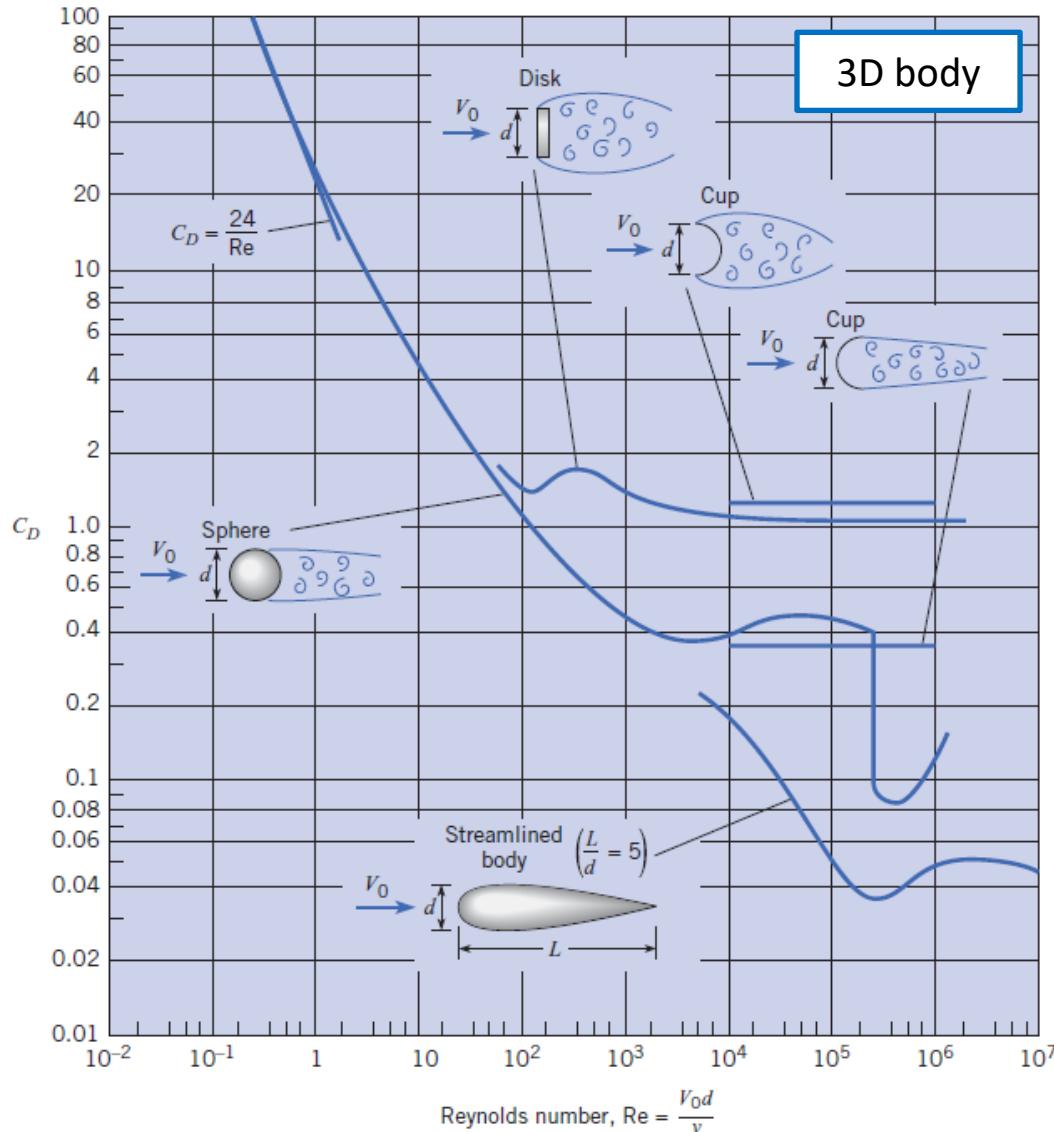
(drag coefficient)



$$\frac{\rho D V}{\mu} = \text{Re} \text{ (Reynolds number)}$$

Drag coefficient

(We will see in detail later on - Chapter 11)



$$F_D = [C_D] A \left(\frac{\rho V_0^2}{2} \right)$$

EXERCISE: log-law in turbulent boundary layer flow

In the surface layer (lowest 10-20%), the **velocity gradient** is known to change with **height, density and shear stress**

$$\frac{d\bar{u}}{dz} = f(\rho, z, \tau)$$

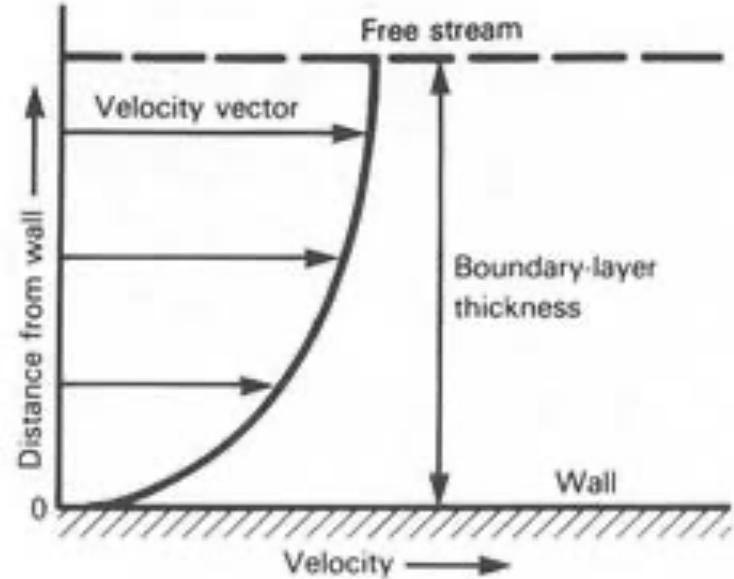
Using dimensional analysis, show that the velocity profile should be **LOGARITHMIC**.

$$\left[\frac{d\bar{u}}{dz} \right] = \frac{1}{T}; [\rho] = \frac{M}{L^3}; [z] = L;$$

$$[\tau] = \frac{ML}{T^2 L^2} = \frac{M}{T^2 L}$$

$$n = 4, m = \frac{3}{(M, L, T)} \rightarrow n - m = 1$$

1 dimensionless group!



Turbulent boundary layer flow:

The velocity gradient changes,

$$\frac{1}{T} = \left[\frac{M}{L^3} \right]^a \times [L]^b \times \left[\frac{M}{T^2 L} \right]^c$$

$$L: 0 = -3a + b + c$$

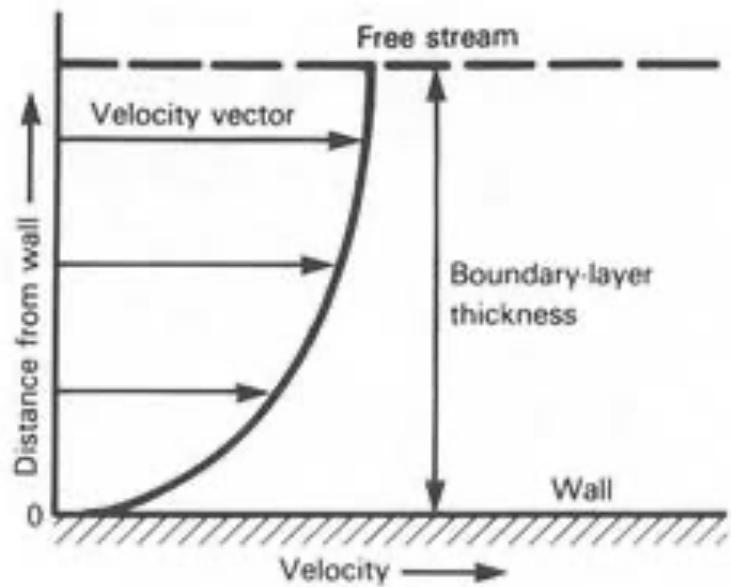
$$M: 0 = a + c$$

$$T: -1 = -2c$$

$$c = 1/2; \quad a = -1/2; \quad b = -1$$

$$\frac{d\bar{u}}{dz} \propto \rho^{-1/2} z^{-1} \tau^{1/2} = \frac{\sqrt{\tau / \rho}}{z}$$

$$\left[\sqrt{\tau / \rho} \right] = \frac{L}{T} \rightarrow \text{friction velocity: } u_* = \sqrt{\tau / \rho}$$



Turbulent boundary layer flow

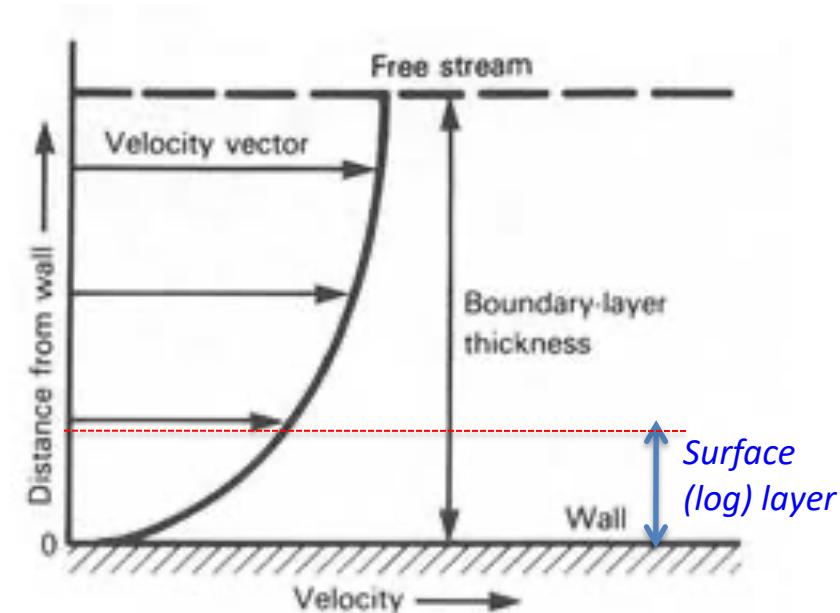
$$\frac{z}{u_*} \frac{d\bar{u}}{dz} = \text{constant (universal)}$$

$$\frac{z}{u_*} \frac{d\bar{u}}{dz} = \frac{1}{\kappa} = \frac{1}{0.4}, \quad \kappa: \text{von Karman cont.}$$

$$\int_{u_1}^{u_2} d\bar{u} = \frac{u_*}{\kappa} \int_{z_1}^{z_2} \frac{dz}{z}$$

$$u_2 - u_1 = \frac{u_*}{\kappa} \ln \frac{z_2}{z_1} \rightarrow \text{at } z_1 = z_0, \bar{u}_1 = 0 \rightarrow$$

Over a rough surface:
 z_0 is the aerodynamic roughness



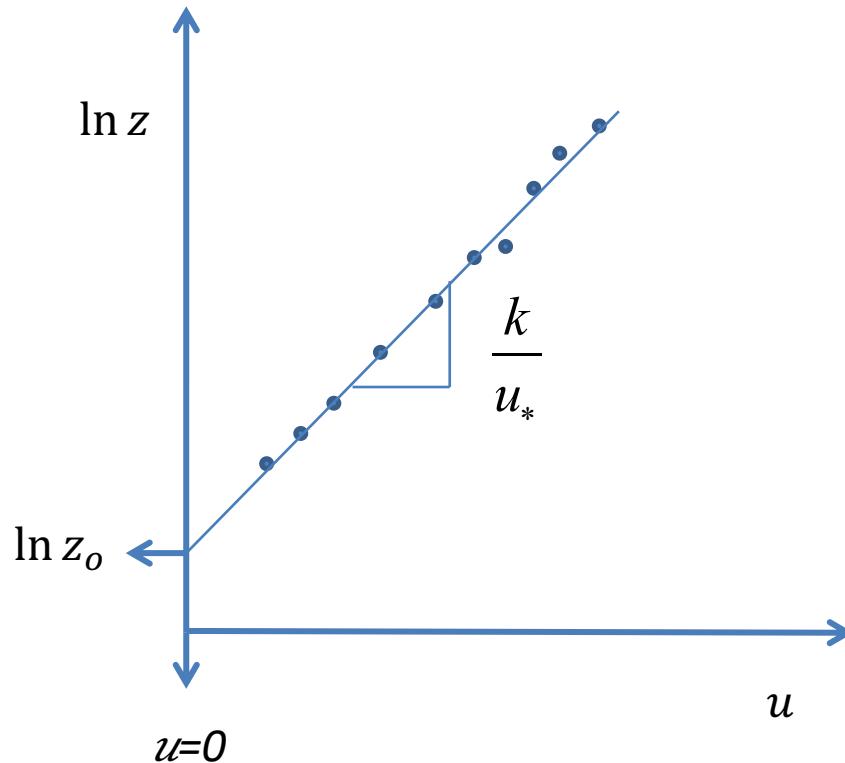
$$\bar{u}(z) = \frac{u_*}{\kappa} \ln \frac{z}{z_0}$$

Logarithmic velocity profile (log-law) in the surface layer

z_0 (aerodynamic/hydrodynamic roughness): defined as the height at which the velocity would be zero if extrapolating the log law.

The LOG LAW is valid in the 'surface layer' (the lowest 10-20% of the boundary layer), where u_* can be assumed to be constant

Turbulent boundary layer flow:



Significant variables and common dimensionless numbers:

$$\Delta p = f(V, L, \rho, \mu, E_v, \sigma, \Delta \gamma)$$

$$[\Delta p] = \frac{F}{L^2} \text{ pressure difference}$$

$$[V] = \frac{L}{T} \text{ velocity}$$

$$[L] = L \text{ length}$$

$$[\sigma] = \frac{F}{L} \text{ surface tension}$$

$$[\Delta \gamma] = \frac{F}{L^3} \text{ weight difference}$$

$$[\rho] = \frac{FT^2}{L^4} = \frac{M}{L^3} \text{ density}$$

$$[\mu] = \frac{FT}{L^2} \text{ viscosity}$$

$$[E_v] = \frac{F}{L^2} \text{ elasticity}$$

$$\frac{\Delta p}{\rho V^2} = g \left(\frac{VL\rho}{\mu}, \frac{V}{\sqrt{\frac{E_v}{\rho}}}, \frac{\rho LV^2}{\sigma}, \frac{V^2}{L \frac{\Delta \gamma}{\rho}} \right)$$

Frequent dimensionless numbers:

Table 8.3 COMMON Π -GROUPS			
π -Group	Symbol	Name	Ratio
$\frac{p - p_0}{(\rho V^2)/2}$	C_p	Pressure coefficient	$\frac{\text{Pressure difference}}{\text{Kinetic pressure}}$
$\frac{\tau}{(\rho V^2)/2}$	c_f	Shear-stress coefficient	$\frac{\text{Shear stress}}{\text{Kinetic pressure}}$
$\frac{F}{(\rho V^2 L^2)/2}$	C_F	Force coefficient	$\frac{\text{Force}}{\text{Kinetic force}}$
$\frac{\rho L V}{\mu}$	Re	Reynolds number	$\frac{\text{Kinetic force}}{\text{Viscous force}}$
$\frac{V}{c}$	M	Mach number	$\frac{\text{Kinetic force}}{\text{Compressive force}}$
$\frac{\rho L V^2}{\sigma}$	We	Weber number	$\frac{\text{Kinetic force}}{\text{Surface-tension force}}$
$\frac{V}{\sqrt{gL}}$	Fr	Froude number	$\frac{\text{Kinetic force}}{\text{Gravitational force}}$

Interpretation: Force ratios

Inertial (kinetic) force: $[F_k] = \left[\frac{1}{2} \rho V^2 \cdot A \right] \propto (\rho V^2)(L^2) = \rho L^2 V^2$

Viscous force: $[F_v] = [\tau A] \propto \left(\mu \frac{V}{L} \right) (L^2) = \mu V L$

$$\frac{F_k}{F_v} \propto \frac{\rho L^2 V^2}{\mu V L} = \frac{\rho L V}{\mu} = \text{Re}$$
 (Reynolds number)

Laminar flows

Example:

-water flow inside soils

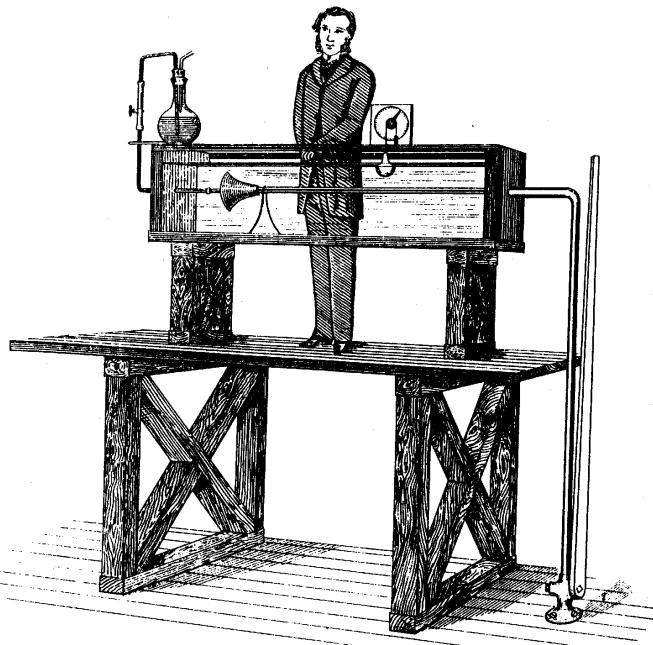
Turbulent flows

Examples:

- river flows
- atmospheric boundary layer
- most pipe and channel flows

Laminar and Turbulent Flow

Reynolds' experiment



Reynolds Number: $Re = \frac{VD}{\nu} = \frac{\rho VD}{\mu}$

$Re \leq 2000$

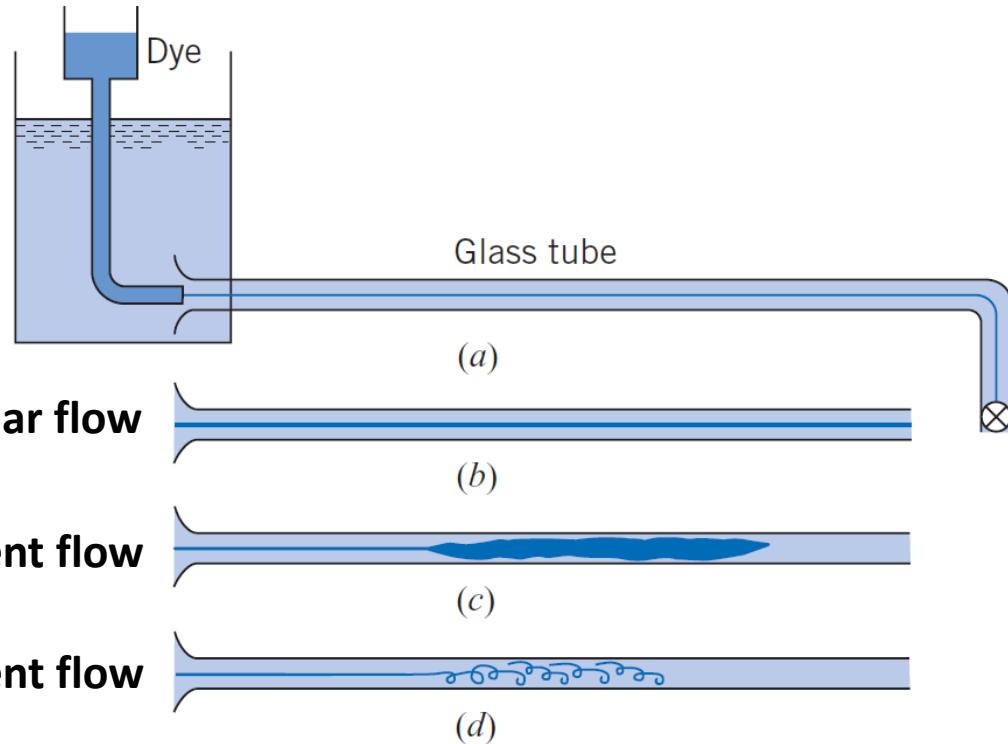
laminar flow

$2000 \leq Re \leq 3000$

unpredictable

$Re \geq 3000$

turbulent flow



Interpretation: Force ratios

Kinetic (inertial) force: $[F_k] = \left[\frac{1}{2} \rho V^2 \cdot A \right] \propto (\rho V^2)(L^2) = \rho L^2 V^2$

Pressure force: $[F_p] = [\Delta p A] \propto \Delta p L^2$

$$\frac{2F_p}{F_k} \propto \frac{2\Delta p L^2}{\rho L^2 V^2} = \boxed{\frac{\Delta p}{\frac{1}{2} \rho V^2}} = C_p \quad (\text{pressure coefficient})$$

Interpretation: Force ratios

Kinetic force: $[F_k] = \left[\frac{1}{2} \rho V^2 \cdot A \right] \propto (\rho V^2)(L^2) = \rho L^2 V^2$

Surface tension force : $[F_\sigma] \propto \sigma L$

$$\frac{F_k}{F_\sigma} \propto \frac{\rho L^2 V^2}{\sigma L} = \boxed{\frac{\rho L V^2}{\sigma}} = \text{We} \quad (\text{Weber number})$$

$We \gg 1 \longrightarrow$ Surface tension not important

Interpretation: Force ratios

Inertial (kinetic) force:
$$[F_k] = \left[\frac{1}{2} \rho V^2 \cdot A \right] \propto (\rho V^2)(L^2) = \rho L^2 V^2$$

Gravity force :
$$[F_g] = [mg] \propto (\rho L^3)(g)$$

$$\sqrt{\frac{F_k}{F_g}} \propto \sqrt{\frac{\rho L^2 V^2}{\rho L^3 g}} = \sqrt{\frac{V^2}{Lg}} = \boxed{\frac{V}{\sqrt{Lg}} = \text{Fr}} \quad (\text{Froude number})$$

- Note: Very important in **Hydraulics (open channel flow)** – will study in Chapter 15

Interpretation: Force ratios

Inertial (kinetic) force:
$$[F_k] = \left[\frac{1}{2} \rho V^2 \cdot A \right] \propto (\rho V^2)(L^2) = \rho L^2 V^2$$

Elastic force:
$$[F_c] = [E_v L^2] = \rho V c L^2$$

$$\frac{F_k}{F_c} \propto \frac{\rho L^2 V^2}{\rho V c L^2} = \boxed{\frac{V}{c}} = M \text{ (Mach number)}$$

Subsonic flow (incompressible)

$$M < 0.8$$

Most environmental flows:

- rivers
- lakes
- groundwater
- atmosphere

Supersonic flow (compressible!)

$$M > 1.2$$

Experimental Fluid Mechanics:

Experiments are often difficult in ‘real’ (field) scales because of:

- Complicated boundary conditions
- Difficult to measure the flow in the field
- Turbulence
- Non-repeatable

An alternative is to use **laboratory experiments** (e.g., in wind tunnels or water flumes).

- **Two aspects that we have to take into account in lab experiments:**
 - Geometric similarity
 - Dynamic similarity

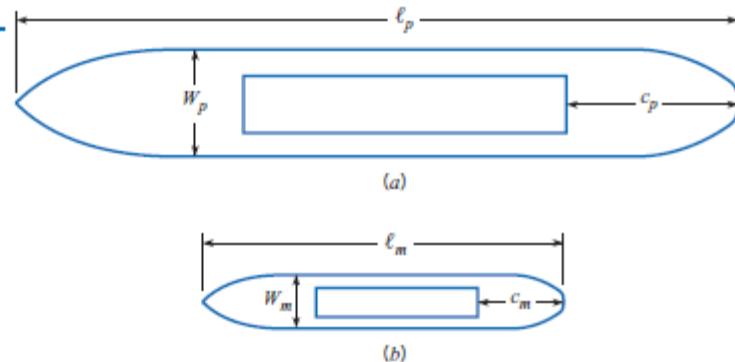
Experimental Fluid Mechanics:

1. Geometric similarity

means that the model is an exact geometric replica of the prototype

Figure 8.4

(a) Prototype. (b) Model.



$$\frac{L_m}{L_p} = \frac{W_m}{W_p} = \frac{c_m}{c_p}$$

Experimental Fluid Mechanics:

2. Dynamic similarity

the forces that act on corresponding masses in the model and prototype are in the same ratio throughout the entire flow field.

$$\frac{F_{i,p}}{F_{g,p}} = \frac{F_{i,m}}{F_{g,m}} \rightarrow Fr_p = Fr_m$$

$$\frac{F_{i,p}}{F_{v,p}} = \frac{F_{i,m}}{F_{v,m}} \rightarrow Re_p = Re_m$$