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Need for Dimensional Analysis
• In fluid mechanics several variables are involved.
• Often they can be grouped in non-dimensional numbers.
• “Universal” FUNCTIONAL RELATIONSHIP between those non-dimensional 

numbers ↔ EXPERIMENTS.
• Applications:

- Design of experiments at reduced scales (e.g. wind tunnel, water flumes) 
- Simple models (e.g., the ‘log-law’: logarithmic velocity profile)
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Example: Drag Force on a Sphere

Important variables: 
Viscosity: µ
Velocity: V
Diameter: D
Density: ρ
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FD
dependent
 = f V ,ρ,µ,D

independent variables
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GOAL: Identify non-dimensional groups between the important variables and find a 
‘universal’ relation between them



Introduction

Primary dimensions:
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Secondary dimensions:

Force:

Pressure:

Viscosity:
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Buckingham Π Theorem

• n: number of variables involved 
• m: number of basic dimensions included in the variables

• (n - m) number of dimensionless variables (Π groups)
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Example: Drag Force on a Sphere

• n: number of variables involved: 
• m: number of basic dimensions included in the variables: 
• (n - m) number of dimensionless variables (Π groups)

• In this case: 5-3=2, number of dimensionless variables
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Example: Drag Force on a Sphere

Important variables: 
Viscosity: µ
Velocity: V
Diameter: D
Density: ρ
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FD
dependent
 = f V ,ρ,µ,D

independent variables
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Drag Force on a Sphere
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• Exponent Method



Drag Force on a Sphere
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Empirical ‘universal’ relation between the two non-dimensional groups (from experiments): 

  

ρDV
µ

= Re (Reynolds number)
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(drag coefficient)



Drag coefficient
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3D body

(We will see in detail later on - Chapter 11)
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In the surface layer (lowest 10-20%), the velocity gradient is known to 
change with height, density and shear stress
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n = 4, m = 3

( M , L,T )
 → n− m = 1

EXERCISE: log-law in turbulent boundary layer flow

1 dimensionless group!

Using dimensional analysis, show that the 
velocity profile should be LOGARITHMIC.



Turbulent boundary layer flow:
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The velocity gradient changes,

L:					0=−3a+b+c
M:				0=a+c
T:					−1=−2c

c=1/2;			a=−1/2;			b=−1
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→ friction velocity : u* = τ / ρ
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Turbulent boundary layer flow:
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The LOG LAW is valid in the ‘surface layer’ (the lowest 10-20% of the boundary layer), 
where  u* can be assumed to be constant

*

constant (universal)z d u
u dz

=

  

z
u*

d u
dz

= 1
κ
= 1

0.4
,    κ : von Karman cont.

  

d u =
u*

κu1

u2∫
dz
zz1

z2∫
u2 − u1 =

u *

κ
ln

z2

z1

 →   at z1 = z0 , u1 = 0   →
  
u (z) =

u*

κ
ln z

z0

Logarithmic velocity 
profile (log-law) in the 
surface layerOver a rough surface: 

zo is the aerodynamic roughness

zo (aerodynamic/hydrodynamic roughness): defined as the height at which the velocity 
would be zero if extrapolating the log law.

Surface 
(log) layer 



Turbulent boundary layer flow:
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Significant variables and common dimensionless 
numbers:
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Frequent dimensionless numbers:
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Interpretation: Force ratios
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Inertial (kinetic) force:

Viscous force: 

  
Fk⎡⎣ ⎤⎦ =
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µV L
= ρLV

µ
= Re    (Reynolds number)

Laminar flows Turbulent flows

Example:
-water flow inside soils

Examples:
-river flows
-atmospheric boundary layer
-most pipe and channel flows



Laminar and Turbulent Flow

Reynolds’ experiment

Laminar flow

Turbulent flow

Eddies in turbulent flow

Reynolds Number:



Interpretation: Force ratios
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Kinetic (inertial) force:

Pressure force: [ ] 2
pF p A pLé ù = D µDë û
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Interpretation: Force ratios
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Kinetic force:

Surface tension force : [ ]F Ls sµ

2 2 2

We (Weber number)kF LV LV
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  We >>1 Surface tension not important



Interpretation: Force ratios
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Inertial (kinetic) force:

Gravity force : 
  

Fg
⎡⎣ ⎤⎦ = mg⎡⎣ ⎤⎦ ∝ ρL3( ) g( )

• Note: Very important in Hydraulics (open channel flow) – will study in Chapter 15 
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Interpretation: Force ratios
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Inertial (kinetic) force:

Elastic force:  [ ] 2 2
c vF E L VcLré ù= =ë û

Subsonic flow (incompressible) Supersonic flow (compressible!)

  M < 0.8   M >1.2
Most environmental flows:

-rivers
-lakes
-groundwater
-atmosphere
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Experimental Fluid Mechanics:
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Experiments are often difficult in ‘real’ (field) scales because of:
o Complicated boundary conditions
o Difficult to measure the flow in the field
o Turbulence
o Non-repeatable

An alternative is to use laboratory experiments (e.g., in wind tunnels or 
water flumes).

o Two aspects that we have to take into account in lab experiments:
ØGeometric similarity
ØDynamic similarity



Experimental Fluid Mechanics:
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1. Geometric similarity
means that the model is an exact geometric replica of the prototype

m m m

p p p

L W c
L W c

= =



Experimental Fluid Mechanics:
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2. Dynamic similarity
the forces that act on corresponding masses in the model and prototype 
are in the same ratio throughout the entire flow field.
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